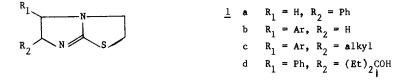
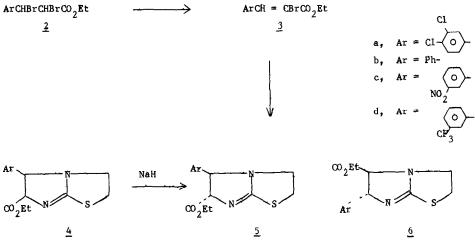
THE SYNTHESIS OF 2,3,5,6-TETRAHYDROIMIDAZO [2, 1-b] THIAZOLES UTILISING α-BROMO-MICHAEL ACCEPTORS


R. Bayles, P. W. R. Caulkett, T. P. Seden and R. W. Turner

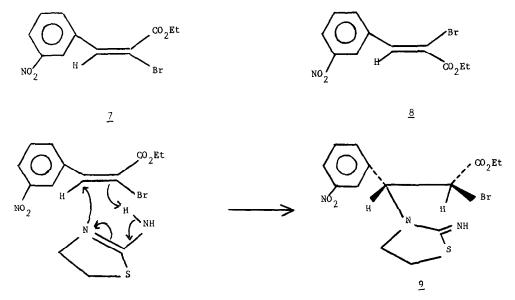
Pharmaceuticals Division, I.C.I. Ltd., Alderley Park,

Macclesfield, Cheshire, England.


(Received in UK 1 September 1975, accepted for publication 6 November 1975)

6-Phenyl 2,3,5,6-tetrahydroimidazo (2, 1-b) thiazole (<u>1</u>a) is a potent anthelmintic¹ for which immune response potentiation², and antinflammatory properties³ have been claimed. A facile synthesis of the isomeric 5-aryl substituted and 5-aryl-6-alkyl-disubstituted-tetra-hydroimidazo (2, 1-b) thiazoles (<u>1</u>b) and (<u>1</u>c) was required in order to explore their biological properties. The cis and trans esters (<u>4</u>) and (<u>5</u>) were selected as ideal starting materials for the study and this preliminary report describes their facile formation from the ambident nucleophile, 2-aminothiazoline and the α -bromo Michael acceptors (<u>3</u>).

The α -bromo cinnamates were conveniently generated in situ as a mixture of geometrical isomers by treatment of an ethyl acetate solution of the substituted cinnamate ester dibromides (2) with one equivalent of triethylamine. This solution was then reacted with 2-amino-thiazoline (one equivalent) and a further equivalent of triethylamine. In a typical example utilising (2a) as the starting material, the solution was refluxed for 12 hours and from the reaction mixture was obtained the cis-ester, (4a) in 20% yield, m.p. 128-130° (acetone/petroleum ether), I.R.V (nujol) 1750 cm⁻¹ (C = 0), N.M.R.S (CDCl₃), 7.42 (d, 1H), 7.30 (d, 1H), 7.15 (d.d, 1H), 5.22 (d, 1H, -CH benzylic), 4.68 (d, 1H, -CH-CO₂Et), 3.9-2.9 (m. 6H, -CH₂-CH₂-, -CH₂-0-), 0.90 (t, 3H, -CH₃), the trans-ester (5a) in 27% yield, m.p. 84-85° (acetone/petroleum ether), I.R.V (nujol) 1720 cm⁻¹ (C = 0), N.M.R.S (CDCl₃) 7.55 (d, 1H), 7.44 (d, 1H), 7.25 (d.d, 1H), 4.72 (d, 1H, -CH benzylic) 4.60 (d, 1H, -CHCO₂Et), 4.22 (q, 2H, -CH₂-0-), 3.55 (m, 4H,


-CH₂CH₂-), 1.30 (t, 3H, CH₃-) and the isomeric trans-ester ($\underline{6}a$) in 1% yield, m.p. 98-100° (acetone), I.R. γ (nujol) 1740 cm⁻¹ (C = 0), N.M.R. $\int (CDCl_3)$, 7.52 (d, 1H), 7.42 (d, 1H), 7.25 (d.d, 1H), 5.52 (d, 1H, - $\underline{c}H$ benzylic), 4.28 (q, 2H, -CH₂-O-), 3.50 (m, 5H, -CH₂-CH₂-, -CH CO₂ Et), 1.30 (t, 3H, CH₃-). The assignment of these structures to the 3 isomers isolated was made utilising N.M.R. spectral data and epimerisation studies. The cis-isomer ($\underline{4}a$) was readily converted by a catalytic amount of sodium hydride in dioxan to its geometrical isomer ($\underline{5}a$). The N.M.R. spectrum of the cis isomer showed the ester methylene and methyl proton signals at very high field owing to the shielding effect of the cis-arometic ring. The trans-isomer ($\underline{5}a$) showed a benzylic proton signal at 5.52 in its N.M.R. spectrum, compared with a figure of 5.40 for the benzylic proton in ($\underline{1}a$), whereas its structural isomer ($\underline{5}a$) displayed a benzylic doublet at 4.72 compared with a figure of 4.50 for the benzylic proton of 5-phenyl-2,3,5,6tetrahydroimidazo (2, 1-b) thiazole⁴, ($\underline{1}b$ Ar = Ph).

The 5-aryl-2,3,5,6-tetrahydroimidazo (2, 1-b) thiazoles, (4b-d) and (5b-d) shown in Table I were prepared in an analogous fashion. Attempts were not made to isolate the minor products (6 b-d).

<u>Table 1</u>			
Compound	m.p.	Yield %	Reflux time
4b	99	10	20 hrs
5b	98 - 102	30	
4c	87 - 90	15	6 hrs
5c	129 - 131	18	
4d	121 - 122	33	9 hrs
5d	114 - 116	17	

The α -bromo cinnamate (3c) was separated by column chromatography (silica/elutant toluene) into the cis and trans isomers, (7) yellow oil, and (8), m.p. 69-71 (petroleum ether). The N.M.R. spectrum of the trans-isomer showed an olefin signal at \mathbf{S} 8.22 (calculated value 8.20)⁵ whereas the cis-isomer displayed a singlet at 7.40 (calculated value 7.36).

The cis-isomer $(\underline{7})$ reacted with one equivalent of 2-aminothiazoline and triethylamine at room temperature to give exclusively the cis ester $(\underline{4}c)$. In contrast the trans-isomer $(\underline{8})$ reacted very slowly at ambient temperature, but on refluxing for 4 hours, the trans-ester $(\underline{5}c)$, together with a trace of $(\underline{6}c)$ was obtained. Similar stereoselective reactions have been observed recently⁶, when cis- and trans-2-bromobut-2-enoate esters were treated with catechol to give the isomeric 1,4-benzodioxans. A cis Michael addition of 2-aminothiazoline (e.g. to $\underline{7}$) is postulated for these stereospecific reactions involving intramolecular hydrogen abstraction, followed by cyclisation of the resultant bromides (e.g. 9).

Confirmation of the structures assigned to the three isomeric esters ($\underline{4}$), ($\underline{5}$) and ($\underline{6}$) was provided by an X-ray study⁷ of the trans-isomer of the carbinol ($\underline{1}d$), m.p. 115°-117° (petroleum ether), obtained by reaction of the ester ($\underline{5}b$) with excess ethyl magnesium bromide. The trans-carbinol and related compounds exhibited high antidepressant activity and these results will be reported elsewhere.

References

٠

- A. H. Raeymaekers, F. T. N. Allewijn, J. Vandenberk, P. S. A. Demoen, T. T. N Offenwert and P. A. J. Janssen, J. Med. Chem., <u>9</u>, 545 (1966).
- (2) H. Verhaegen, New Eng. J. Med., <u>289</u>, 1148 (1973).
- (3) Y. Schuermans, Lancet 1, 111 (1975).
- (4) Kindly supplied by Janssen Pharmaceuticals.
- (5) C. Pascual, J. Meier and N. Simon, Helv. Chim. Acta., <u>49</u>, 164 (1966).
- (b) A. R. Martin, S. K. Mallick and J. F. Caputo, J. Org. Chem., <u>39</u>, 1808 (1974).
- (7) X-ray studies carried out by Dr. A. F. Cameron, University of Glasgow.